杨赞讲师

日期: 2024-09-04

杨赞

照片

image.png

中国

博士

所学专业

机械工程

毕业院校

华中科技大学

讲师

职称类别

导师类别

电子邮件

yangzan@ncu.edu.cn

所在单位

先进制造学院

个人信息

杨赞(Zan Yang),男,1994-10,博士,南昌大学先进制造学院教师。从事复杂机械产品性能精确建模和优化方面的研究和应用工作,致力于通过数学和人工智能等手段使产品的性能得到精准预测和优化,应用研究重点关注面向复杂装备的智能优化设计与面向复杂场景的智能识别等方向研究,理论研究包括设计高效的机器学习辅助的智能进化算法、设计高鲁棒性轻量化的深度学习网络模型。主持/参与国家自然科学基金3项、江西省重大科技研发专项1项、江西省主要学科学术和技术带头人培养项目1项、江西省工信院关于申报国家级智能制造企业咨询辅导项目1项、南昌市博士科研创新中心项目1项、南昌大学青年人才培育创新基金项目1项;获江西省科技进步二等奖1项、南昌大学教学成果奖特等奖1项;发表SCI论文40余篇(ESI高被引2篇、中科院一区26篇),Google学术引用1000余次,以第一/通讯作者在《Computer Methods in Applied Mechanics and Engineering》、《Expert Systems with Applications》、《Tribology International》、《Swarm and Evolutionary Computation》等中科院TOP期刊上发表SCI论文20余篇,授权国家发明专利15项,公开国家发明专利30余项;担任《机械设计》、《智能制造》、《CJME: Additive Manufacturing Frontiers》与《Journal of Intelligent Construction》等国际权威期刊青年编委。

教育经历

2012.9-2016.6 山东科技大学 工业工程 本科 毕设导师:任大伟

2016.9-2022.6 华中科技大学 机械工程 博士 导师:高亮、邱浩波

2021.3-2022.3 新加坡国立大学 CSC联培博士 导师:Christine A. Shoemaker

工作履历

20227月至今 南昌大学先进制造学院

科研项目

地区科学基金:基于分层重构和自适应进化的复杂机械产品昂贵约束优化设计方法研究,32万,在研,主持

南昌县(小蓝经开区)揭榜挂帅项目,200万,在研,主持

江西省工业和信息化研究院关于申报国家级智能制造企业咨询辅导项目,21.7万,在研,主持

南昌市博士科研创新中心项目:多尺度复合多孔超材料结构拓扑优化设计,60万,在研,主持

南昌大学青年人才培育创新基金项目,20万,在研,主持

江西省重大科技研发专项“揭榜挂帅”企业需求类项目,700万,参与

江西省主要学科学术和技术带头人培养项目,50万,参与

面上项目:基于精准识别和在线引导的复杂机械产品昂贵约束优化设计方法研究,参与

青年科学基金:基于近似模型和差分进化算法的复杂产品高维设计优化研究,参与

973计划项目子课题:全回转推进装备响应灵敏性分析与敏感装配参数优化,参与

科研成果

发表SCI论文40余篇(ESI高被引2篇、中科院一区26篇),Google学术引用1000余次,部分论文如下:

[1] Yang, Zan; Chu, Sheng; Liu, Jiansheng; et al; Incorporating gradient information into dimension perturbation mutation for high-dimensional expensive optimization[J]. Swarm and Evolutionary Computation, 2024, 84: 101446. (第一作者,中科院一区)

[2] Yang, Zan; Qiu, Haobo; Gao, Liang; et al; A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems, Information Sciences, 2023, 619: 491-508. (第一作者,中科院一区)

[3] Yang, Zan; Qiu, Haobo; Gao Liang; et al; Surrogate-assisted MOEA/D for Expensive Constrained Multi-Objective Optimization[J]. Information Sciences, 2023: 119016. (第一作者,中科院一区)

[4] Yang, Zan; Qiu, Haobo; Gao, Liang; et al; Surrogate-assisted classification-collaboration differential evolution for expensive constrained optimization problems, Information Sciences, 2020, 508: 50-63. (第一作者,中科院一区)

[5] Chu, Sheng; Yang, Zan*; et al; Explicit topology optimization of novel polyline-based core sandwich structures using surrogate-assisted evolutionary algorithm, Computer Methods in Applied Mechanics and Engineering, 2020, 369:113215. (通讯作者,中科院一区)

[6] Tao, Hongkang; Liu, Jiansheng; Yang, Zan*; et al; Revolutionizing flame detection: Novelization in flame detection through transferring distillation for knowledge to pruned model, Expert Systems with Applications, 2024: 123787. (通讯作者,中科院一区)

[7] Liu, Jiansheng; Chen, Jin; Yang, Zan*; et al. Two-layer surrogate-assisted collaborative framework for expensive constrained optimization problems involving mixed integer variables, Information Sciences, 2024: . (通讯作者,中科院一区)

[8] Du, Xing; Lu, Shiyi; Tang, Rui; Li, Xiaobing; Miao, Jiacheng; Yang, Zan*; et al; An efficient method for designing high-performance planetary roller screw mechanism with low contact stress, Tribology International, 2023, 187:108709. (通讯作者,中科院一区)

[9] Liu, Jiansheng; Yuan, Bin; Yang, Zan*; Qiu, Haobo; Population State-driven Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems with Mixed-Integer Variables, Complex & Intelligent Systems, 2024. (通讯作者,中科院二区)

[10] Yang, Zan; Qiu, Haobo; Gao, Liang; at al; Constraint boundary pursuing-based surrogate-assisted differential evolution for expensive optimization problems with mixed constraints, Structural and Multidisciplinary Optimization, 2023, 66(2): 40. (第一作者,中科院二区)

[11] Yang, Zan; Qiu, Haobo; Gao, Liang; et al; Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems, Journal of Global Optimization, 2019, 74: 327-359. (第一作者,中科院二区)

[12] Yang, Zan; Qiu, Haobo; Gao, Liang; et al; A surrogate-assisted particle swarm optimization algorithm based on efficient global optimization for expensive black-box problems, Engineering Optimization, 2019, 51(4): 549-566. (第一作者,中科院三区)

[13] Tao, Hongkang; Wang, Guhong; Liu, Jiansheng; Yang, Zan*; A deep learning-based dynamic deformable adaptive framework for locating the root region of the dynamic flames, PLOS ONE, 2024, 19(4): e0301839. (通讯作者,中科院三区)

[14] Liu, Jiansheng; Yin, Jiahao; Yang, Zan*; Fire Detection and Flame-Centre Localisation Algorithm Based on Combination of Attention-Enhanced Ghost Mode and Mixed Convolution, Applied Sciences, 2024, 14(3): 989. (通讯作者,中科院三区)

[15] Liu Jiansheng; Yuan Bin; Yang Zan*; et al; Research on dual-command operation path optimization based on Flying-V warehouse layout, High Technology Letters, 2023, 29(4): 388-396. (通讯作者,EI期刊论文)

[16] Yang, Zan; Qiu, Haobo; Gao, Liang; et al; A novel surrogate-assisted differential evolution for expensive optimization problems with both equality and inequality constraints, 2019 IEEE Congress on Evolutionary Computation (CEC): 1688-1695. (第一作者,EI会议)

[17] Liu, Yuanhao; Yang, Zan; Xu, Danyang; et al; A Kriging-assisted Double Population Differential Evolution for Mixed-Integer Expensive Constrained Optimization Problems with Mixed Constraints[J]. Swarm and Evolutionary Computation, 2024, 84: 101428. (第二作者,中科院一区)

[18] Liu, Yuanhao; Yang, Zan; Jiang Chen; et al; Lightweight design optimization of two-layer corrugated cored sandwich panel under blast loading using surrogate-assisted different evolution for mixed-integer variables, Engineering Structures, 2024, 321: 118963. (第二作者,中科院一区)

[19] Liu, Yuanhao; Yang, Zan; Jiang Chen; et al; A surrogate-assisted differential evolution for expensive constrained optimization problems involving mixed-integer variables, Information Sciences, 2022, 622: 282-302. (第二作者,中科院一区)

[20] Chen, Liming; Wang, Qingshan; Yang, Zan; Qiu, Haobo; Gao, Liang; Optimization of expensive black-box problems with penalized expected improvement, Computer Methods in Applied Mechanics and Engineering, 2020, 369:113215. (第三作者,中科院一区)

[21] Jiang, Chen; Qiu, Haobo; Yang, Zan; et al; A general failure-pursuing sampling framework for surrogate-based reliability analysis[J]. Reliability Engineering & System Safety, 2019, 183: 47-59. (第三作者,中科院一区,ESI高被引论文)

[22] Dong, Haozhen; Li, Xinyu; Yang, Zan; et al; A two-layer surrogate-assisted differential evolution with better and nearest option for optimizing the spring of hydraulic series elastic actuator[J]. Applied Soft Computing, 2021, 100: 107001. (第三作者,中科院一区)

[23] Chen, Liming; Qiu, Haobo; Gao, Liang; Yang, Zan; Xu, Danyang; Exploiting active subspaces of hyperparameters for efficient high-dimensional Kriging modeling, Mechanical Systems and Signal Processing, 2022, 169: 108643. (第四作者,中科院一区)

[24] Xu, Danyang; Qiu, Haobo; Gao, Liang; Yang, Zan; et al; A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems[J]. Reliability Engineering & System Safety, 2022, 222: 108444. (第四作者,中科院一区)

[25] Chen, Zhenzhong; Qiu, Guiming; Li, Xaioke; Yang, Zan; et al. An improved approximate integral method for nonlinear reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 429: 117158. (第四作者,中科院一区)

[26] Liu, Jiansheng, Zhang, Lijie, Yuan, Bin, Zhang, Ying, Yang, Zan, Huang, Jihui. Design and development of coating for metallic bipolar plates in proton exchange membrane fuel cell (PEMFC): A review. Materials & Design, 2024: 113338. (第五作者,中科院二区)

[27] Zhang, Jinhao; Xiao, Mi; Gao, Liang; Qiu, Haobo; Yang, Zan; An improved two-stage framework of evidence-based design optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58: 1673-1693. (第五作者,中科院二区,ESI高被引论文)

[28] Chen, Liming; Qiu, Haobo; Gao, Liang; Jiang, Chen; Yang, Zan; A screening-based gradient-enhanced Kriging modeling method for high-dimensional problems, Applied Mathematical Modelling, 2019, 69: 15-31. (第五作者,中科院一区)

[29] Chen, Liming; Qiu, Haobo; Gao, Liang; Jiang, Chen; Yang, Zan; Optimization of expensive black-box problems via Gradient-enhanced Kriging. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112861. (第五作者,中科院一区)

[30] Jiang, Chen; Qiu, Haobo; Gao, Liang; Wang, Dapeng; Yang, Zan; EEK-SYS: system reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces. Reliability Engineering & System Safety, 2020, 198: 106906. (第五作者,中科院一区)

[31] Jiang, Chen; Qiu, Haobo; Gao, Liang; Wang, Dapeng; Yang, Zan; Real-time estimation error-guided active learning Kriging method for time-dependent reliability analysis. Applied Mathematical Modelling, 2020, 77: 82-98. (第五作者,中科院一区)

[32] Jiang, Chen; Wang, Dapeng; Qiu, Haobo; Gao, Liang; Chen, Liming; Yang, Zan; An active failure-pursuing Kriging modeling method for time-dependent reliability analysis. Mechanical Systems and Signal Processing, 2019, 129: 112-129. (第六作者,中科院一区)

授权发明专利15余个,部分专利如下:

1. 一种隐身电站设计的优化方法及系统(第一)

2. 面向混合整数昂贵优化问题的代理模型辅助差分进化方法(第一)

3. 注意力信息增强的径向基函数优化设计方法(第一)

4. 基于机器学习的IN718镍基合金成形缺失数据生成与预测方法(第一)

5. 一种机器学习优化设计及系统(第一)

6. 面向高维昂贵优化问题的代理模型辅助的并行协同方法(第一)

7. 一种疟原虫图像检测方法及系统(第二)

8.一种基于深度卷积神经网络的隐球菌图像识别方法(第二)

9. 一种基于数据增强DETR 的隐球菌识别方法及系统(第二)

10. 一种挖掘焊接参数量化关联规则的方法及应用(第七)